

Large-scale graph recessing with emerging storage evices

Huibing Dong

Algorithm	Description
PageRank	Ranking nodes based on their incoming/outgoing edges
Breath-First Search	Graph traversal based on breath
Shortest Path	Finding the path between 2 nodes where the sum of weights is minimal
Pattern Matching	Finding certain structures (e.g. path, star)
Triangle Count	Counting the number of triangles
Connected Component	Finding the subgraphs in which any two vertices are connected

Algorithm	Description
PageRank	Ranking nodes based on their incoming/outgoing edges
Breath-First Search	Graph traversal based on breath
Shortest Path	Finding the path between 2 nodes where the sum of weights is minima
Pattern Matching	Finding certain structures (e.g. path, star)
Triangle Count	Counting the number of triangles
Connected Component	Finding the subgraphs in which any two vertices are connected

$$PR(v^{t}) = 1 - d + d \times \sum_{inedges(v)} PR(u^{t-1}) / |outedges(u)|$$

$$Iterative \qquad Neighbors matter$$

Irregular access

Expensive DRAM

Shared-memory

Memory Single machine

Limited graph size

2013-Ligra, 2014-GraphX, 2015-Chaos Distributed

Memory

Clusters

Costly

2010-Pregel, 2010-Graphlab, 2012-PowerGraph, 2014-GraphX, 2014-Blogel, 2015-Chaos, 2016-Gemini

External-memory

Memory + Storage Single machine Larger size + cost efficient

2012-GraphChi, 2013-X-stream, 2013-TurboGraph, 2015-GridGraph, 2015-FlashGraph, 2017-Graphene, 2017-Mosaic, 2018-GraFBoost, 2019-GraphOne, 2019-Lumos

*Blue: Semi-external systems

Others architecture

Graph-optimized database: Neo4j

PLATFORM FAMILY

Graph Processing Platforms

Large scale graph processing systems: survey and an experimental evaluation, Omar Batarfi et. al, Cluster Computing'15

EXTERNAL/OUT-OF-CORE SYSTEM

GRAPH REPRESENTATION

Graph

Adjacency list

Adjacency matrix

✓ Sparse matrix

 \checkmark Much less storage space needed

Storage format: Compressed Sparse Column (CSC) & Compressed Sparse Row (CSR) files

Semi-external systems

- Vertex data
 - ✤ In the main memory
 - Fine-grained accesses, byte-addressable
- Edge data
 - On the secondary storage
 - ✤ Coarser accesses

External systems

- Even the vertex data itself is too large
- Both Vertex & Edge data on the secondary storage

Continue to scale Large capacity with lower latency

Programming Model Vertex-centric Edge-centric *IO-centric

Execution Model

Bulk synchronous

Asynchronous

PAPER LIST

External systems

OSDI'12	GraphChi	Parallel Sliding Window	8GB DRAM + 256GB SSD + 750GB HD
KDD'13	Turbograph		12GB DRAM + 2x 512GB SSD
SOAP'13	X-Stream	Edge-centric	64GB DRAM + 2x 200GB
ICDE'15	Venus		
ATC'15	GridGraph	2D partition	30.5GB DRAM + 2x 2TB HDD/1800 GB SSD
FAST'15	FlashGraph	semi-external; merges I/O	512GB DRAM + 15x OCZ Vertex 4 SSD
SC'16	G-Store		
FAST'17	Graphene	Fine-grained IO	128GB DRAM + 16x 500GB SSD
EuroSys'17	Mosaic		
ISCA'18	GraFBoost		48GB DRAM + Xilinx VC707 FPGA + 2x 512GB SSD
FAST'19	GraphOne		512GB DRAM + 512GB SSD
ATC' 19	Lumos	Dependency-Driven	64GB DRAM + 4x 1.9TB SSD

PAPER LIST

GraphChi

Parallel Sliding Window

- ✤ one sub-graph at a time
- ✤ 3 phases

X-stream

Edge-centric

GridGraph

Graphene

- Semi-external
- ✤ Merge edges I/O requests

FlashGraph

••		•••		•	
••••		•••	••••		•••
••••					

POTENTIAL RESEARCH PROBLEMS

- Programming model optimization
- Execution model support
- Partitioning
- Serializing
- Emerging Storage devices selection:
 - Zone-named space SSD
 - ZAC/ZBC
 - Open-channel SSD
 - Hybrid devices
 - Storage tiers